10 Sınıf Fonksiyonlar Pdf

10. Sınıf Fonksiyonlar

Fonksiyon Kavramı

Matematikte, bir fonksiyon, bir kümenin her bir elemanını bir başka kümenin bir elemanına eşleyen kurala denir.

Örneğin, “yarım kürenin hacmini yarıçapına göre hesaplama” kuralı bir fonksiyondur. Bu kurala göre, yarıçapı r olan bir yarım kürenin hacmi,

V = (2πr^3) / 3

olarak hesaplanır. Bu kural, yarıçap r’nin her bir değerini yarım kürenin hacmi V’nin bir değerine eşler.

Fonksiyon gösterimi

Bir fonksiyon, aşağıdaki gibi gösterilir:

f: A -> B

Bu gösterimde,

  • f, fonksiyonun adını belirtir.
  • A, fonksiyonun tanım kümesini belirtir.
  • B, fonksiyonun değer kümesini belirtir.

Örneğin, yukarıdaki yarım küre hacmi fonksiyonu, aşağıdaki gibi gösterilebilir:

f: R^+ -> R

Bu gösterimde,

  • f, fonksiyonun adı olan “h”‘dir.
  • A, fonksiyonun tanım kümesi olan pozitif reel sayılar kümesidir.
  • B, fonksiyonun değer kümesi olan reel sayılar kümesidir.

Fonksiyonun tanım ve değer kümesi

Bir fonksiyonun tanım kümesi, fonksiyonun geçerli olduğu değerler kümesidir. Bir fonksiyonun değer kümesi ise, fonksiyonun tanım kümesi üzerindeki her bir elemanın eşleştiği değerler kümesidir.

Örneğin, yukarıdaki yarım küre hacmi fonksiyonunun tanım kümesi, pozitif reel sayılar kümesidir. Çünkü yarıçapın negatif bir sayı olması durumunda, yarım kürenin hacmi tanımlanmaz. Bu fonksiyonun değer kümesi ise tüm reel sayılar kümesidir. Çünkü yarıçapın her bir pozitif değeri için yarım kürenin hacmi bir reel sayı olarak hesaplanabilir.

Fonksiyonun grafiği

Bir fonksiyonun grafiği, fonksiyonun tanım kümesi üzerindeki her bir elemanın eşleştiği noktaların bir araya gelmesiyle oluşan şekildir.

Örneğin, yukarıdaki yarım küre hacmi fonksiyonunun grafiği, aşağıdaki gibidir:

y = (2πx^3) / 3

Bu grafiği çizmek için, x ekseninde pozitif reel sayılar kümesini alırız. y ekseninde ise yarım küre hacmi değerlerini alırız. Bu iki eksendeki her bir nokta için, fonksiyonun kuralını uygulayarak y değerini buluruz. Bulunan y değerlerini birleştirerek grafiği çizeriz.

Fonksiyon türleri

Fonksiyonlar, farklı kriterlere göre sınıflandırılabilir. Bu kriterlerden bazıları şunlardır:

  • Tanım kümesi: Tanım kümesi bakımından, fonksiyonlar açık fonksiyon, kapalı fonksiyon ve küme fonksiyonu olarak sınıflandırılır.
  • Değer kümesi: Değer kümesi bakımından, fonksiyonlar örten fonksiyon, içine fonksiyon ve birim fonksiyon olarak sınıflandırılır.
  • Bireysel özellikleri: Bireysel özellikleri bakımından, fonksiyonlar birebir fonksiyon, öteleme fonksiyonu, çarpım fonksiyonu, ters fonksiyon ve bileşke fonksiyon olarak sınıflandırılır.

Açık fonksiyon

Tanım kümesi tüm reel sayılar kümesi olan fonksiyonlara açık fonksiyon denir.

Kapalı fonksiyon

Tanım kümesi sonlu veya sonsuz sayıda elemana sahip bir küme olan fonksiyonlara kapalı fonksiyon denir.

Küme fonksiyonu

Tanım kümesi bir küme olan fonksiyonlara küme fonksiyonu denir.

Örten fonksiyon

Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.

İçine fonksiyon

Görüntü kümesi değer kümesine eşit olmayan fonksiyonlara içine fonksiyon denir.

Bireysel özellikler

Birebir fonksiyon

Her x1, x2 ∈ A ve x1 ≠ x2 için f(x1) ≠ f(x2) oluyorsa f fonksiyonuna birebir (1-1)


Yayımlandı

kategorisi